The PBW Filtration, Demazure Modules and Toroidal Current Algebras⋆

نویسنده

  • Evgeny FEIGIN
چکیده

Let L be the basic (level one vacuum) representation of the affine Kac–Moody Lie algebra ĝ. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1 · · ·xlv0, where l ≤ m, xi ∈ ĝ and v0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space L with respect to the PBW filtration. The “top-down” description deals with a structure of L as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field eθ(z) , which corresponds to the longest root θ. The “bottom-up” description deals with the structure of L as a representation of the current algebra g ⊗ C[t]. We prove that each quotient Fm/Fm−1 can be filtered by graded deformations of the tensor products of m copies of g.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quiver Varieties and Demazure Modules

Using subvarieties, which we call Demazure quiver varieties, of the quiver varieties of Nakajima, we give a geometric realization of Demazure modules of Kac-Moody algebras with symmetric Cartan data. We give a natural geometric characterization of the extremal weights of a representation and show that Lusztig's semicanonical basis is compatible with the filtration of a representation by Demazur...

متن کامل

Twisted Demazure Modules, Fusion Product Decomposition and Twisted Q-systems

In this paper, we introduce a family of indecomposable finitedimensional graded modules for the twisted current algebras. These modules are indexed by an |R+|-tuple of partitions ξ = (ξ)α∈R+ satisfying a natural compatibility condition. We give three equivalent presentations of these modules and show that for a particular choice of ξ these modules become isomorphic to Demazure modules in variou...

متن کامل

2 1 Se p 20 04 QUIVER VARIETIES AND DEMAZURE MODULES

Using subvarieties, which we call Demazure quiver varieties, of the quiver varieties of Nakajima, we give a geometric realization of Demazure modules of Kac-Moody algebras with symmetric Cartan data. We give a natural geometric characterization of the extremal weights of a representation and show that Lusztig's semicanonical basis is compatible with the filtration of a representation by Demazur...

متن کامل

Part Iv.1. Lie Algebras and Co-commutative Co-algebras

Introduction 2 1. Lie algebras: recollections 3 1.1. The basics 3 1.2. Scaling the structure 3 1.3. Filtrations 4 1.4. The Chevalley complex 4 1.5. The functor of primitives 6 1.6. The enhanced adjunction 6 1.7. The symmetric Hopf algebra 8 2. Looping Lie algebras 9 2.1. Group-Lie algebras 10 2.2. Forgetting to group structure 10 2.3. Chevalley complex of group-Lie algebras 11 2.4. Chevalley co...

متن کامل

Representations of Khovanov-lauda-rouquier Algebras Iii: Symmetric Affine Type

We develop the homological theory of KLR algebras of symmetric affine type. For each PBW basis, a family of standard modules is constructed which categorifies the PBW basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008